

Evolving Resource Adequacy Models: Min-Max Operating Temperatures

Brendan Long

Associate Market Design Specialist

ICAPWG/MIWG

March 20, 2024

Agenda

- Background
- Min-Max Operating Temperature Submittals
- Current NYISO Modeling Practices
- Next Steps

Background

Background

- Load uncertainty is incorporated in the base case of the IRM model by using Bins that measure load response to a probabilistic distribution of seasonal peak-producing temperatures
- Upper Bins (Bins 1-3) represent cases where the system experiences temperatures driving higher seasonal peak loads than the baseline forecast
- Multiple units are providing minimum and maximum operational temperature data that do not meet the temperature thresholds corresponding to the upper Bins
 - This introduces risk to whether our system can adequately respond to loads driven by these temperatures

Project Scope

• As part of this project, the NYISO plans to:

- 1. Understand how generators derive their minimum and maximum operational temperature data
- 2. Understand current NYISO modeling practices for extreme temperatures
- 3. Measure the installed capacity at risk of being unavailable during extreme bin contingencies due to operational temperature limitations
- 4. Identify potential modeling improvements

Today's Objective

• As part of this project, the NYISO plans to:

- 1. Understand how generators derive their minimum and maximum operational temperature data
- 2. Understand current NYISO modeling practices for extreme temperatures
- 3. Measure the installed capacity at risk of being unavailable during extreme bin contingencies due to operational temperature limitations
- 4. Identify potential modeling improvements

Min-Max Operating Temperature Submittals

Min-Max Operating Temperature Submittals

- Section 3.3 of the Transmission and Dispatch Manual requires ICAP suppliers to complete an annual Generator Fuel and Emissions Reporting (GFER) survey¹
- As part of this survey, Generation Owners are required to submit minimum and maximum operating temperatures²
 - There is no standard method for deriving maximum operating temperatures, but there is a standard method for deriving minimum operating temperatures
- 1. <u>Transmission and Dispatch Operations Manual</u>
- 2. GFER User's Guide

New York ISO

Minimum Operating Temperature Submittals

- In compliance with NERC Standard EOP-011-2¹, Generation Owners are required to submit minimum operating temperatures that reflect either:
 - 1. A minimum design temperature
 - 2. A minimum historical operating temperature
 - 3. A minimum operating temperature determined by an engineering analysis
- These guidelines became effective on April 1, 2023
- The NERC guidelines were created to enhance reliability by providing more awareness of unit limitations during cold weather events²
 - In reference to FERC's report, The South Central United States Cold Weather Bulk Electric System Event of January 17, 2018³
- 1. <u>EOP-011-2</u>
- 2. Cold Weather Project 2019-06
- 3. FERC Report

Current NYISO Modeling Practices

Current NYISO Modeling Practices

- The Capacity Model used for the IRM study accounts for the impact of ambient temperatures on the output of thermal units
 - Uses temperature correction curves provided by units to estimate their output based on temperatures ranging from 60F to over 100F¹
 - Captures the reduction in output for units operating at temperatures above DMNC test temperatures
 - MARS derates unit capacities based on area loads as a proxy for ambient temperatures

1. <u>2024 IRM Report - Appendix A</u>

Current NYISO Modeling Practices (cont'd)

Thermal Units

• The ambient temperature correction curves cover a limited temperature range that may not capture resource-specific limitations outside of that range

Non-Thermal Units

• The Capacity Model does not include temperature curves or account for the impact of ambient air temperature for non-thermal units

Next Steps

Evaluation of Extreme Temperatures on Installed Capacity

- The NYISO's evaluation will:
 - Compare min-max operational temperatures with extreme bin temperature thresholds
 - Quantify the potential capacity losses during extreme bin contingencies
 - Classify losses by participation model and zone

Planning to present results to the ICAPWG on April 2nd

Additional Next Steps – 2024 Q2

- Identify and evaluate areas of potential modeling enhancement
- Begin conducting modeling tests

Previous Discussions

Previous Discussions

Date	Working Group	Discussion Points and Links to Materials
February 7, 2024	ICAPWG	Evolving Resource Adequacy Project Kick Off: https://www.nyiso.com/documents/20142/42807168/Evolving%20Resource%20Adequacy%20Models%20Kick%20Off%20v1.pdf/1c028164-74dc- cf39-d6d4-0873ea3367b3

Our Mission & Vision

 \checkmark

Mission

Ensure power system reliability and competitive markets for New York in a clean energy future

Vision

Working together with stakeholders to build the cleanest, most reliable electric system in the nation

Questions?

